Théorème de Paley-Wiener pour les fonctions de Whittaker sur un groupe réductif p-adique

نویسنده

  • Patrick Delorme
چکیده

Résumé Soit G un groupe réductif p-adique et U0 le radical unipotent d’un sousgroupe parabolique minimal de G. Nous introduisons une transformation de Fourier pour l’espace des fonctions de Whittaker lisses sur G et à support compact modulo U0. Nous en déterminons l’image. La preuve suit celle d’Heiermann pour les fonctions sur le groupe. Au cours de la preuve, une formule d’inversion est prouvée. Celle-ci permet de montrer qu’une représentation lisse irréductible de G, qui possède modèle de Whittaker dans les fonctions de Whittaker à support compact modulo U0 , est cuspidale. Ce travail nous a donné l’opportunité de préparer un cadre pour l’analyse harmonique sur les espaces symétriques réductifs p-adiques: B-matrices et terme constant, propriétés des paquets d’ondes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Formule de Plancherel pour les fonctions de Whittaker sur un groupe réductif p-adique

Résumé Nous prouvons la formule de Plancherel pour les fonctions de Whittaker sur un groupe réductif p-adique. Les méthodes sont proches de celles de la preuve de Waldspurger, d’après Harish-Chandra, pour les fonctions lisses sur le groupe. Au delà du résultat, ce travail met en place un cadre qui devrait s’avérer utile pour d’autres formules de Plancherel, notamment pour les espaces symétrique...

متن کامل

A spectral Paley-Wiener theorem for the Heisenberg group and a support theorem for the twisted spherical means on Cn

— We prove a spectral Paley-Wiener theorem for the Heisenberg group by means of a support theorem for the twisted spherical means on Cn. If f(z)e 1 4 |z| 2 is a Schwartz class function we show that f is supported in a ball of radius B in Cn if and only if f×μr(z) = 0 for r > B+ |z| for all z ∈ Cn. This is an analogue of Helgason’s support theorem on Euclidean and hyperbolic spaces. When n = 1 w...

متن کامل

Sur le Théorème de Paley-Wiener d’Arthur

Le Théorème de Paley-Wiener de J. Arthur (cf. [A]) décrit la transformée de Fourier de l’espace des fonctions C∞ à support compact, K-finies à droite et à gauche, ou plutot τ -sphériques sur un groupe réductif réel dans la classe d’Harish-Chandra. La démonstration repose sur le déplacement de contour de certaines intégrales et sur l’étude des résidus ainsi obtenus. Plus récemment ce résultat a ...

متن کامل

Stabilité en niveau 0, pour les groupes orthogonaux impairs p-adiques

Précisons tout de suite que dans ce qui suit, F est un corps extension finie de Qp avec p 6= 2 et même pour le théorème principal p grand. Le but de ce travail est de produire des fonctions sur les groupes p-adiques orthogonaux impairs dont les intégrales orbitales sur les éléments elliptiques réguliers ne dépendent que des classes de conjugaison stable. Au passage, on produit aussi des fonctio...

متن کامل

Définissabilité dans les Corps de Fonctions p-Adiques

We study function fields over p-adically closed fields in the first-order language of fields. Using ideas of Duret [D], we show that the field of constants is definable, and that the genus is an elementary property. ?0. Introduction. Soit p un nombre premier fixed. Un corps p-adiquement clos est un corps elementairement equivalent au corps des nombres p-adiques, Qp. Le langage des corps sera le...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009